Mostafa Aghaei Jouybari, Ph.D.

Assistant Professor, University of Kansas

8 Google Scholar

PROFESSIONAL SUMMARY

- Highly experienced Computational Fluid Dynamicist. Proficient in various aspects of Turbulence Simulation & Modeling (DNS/LES/RANS), Numerical Methods, Artificial Intelligence, High Performance Computing (HPC), Supersonic Flows, and Immersed Boundary Methods.
- Proven track record of successful research: Author and co-author of 10 peer-reviewed articles
 published in esteemed Fluid Mechanics journals and conference proceedings. Possesses exceptional
 problem-solving abilities, a collaborative mindset, and adeptness in communicating complex
 academic and technical concepts effectively.
- A dedicated instructor with a strong commitment to fostering a deep understanding of Fluid Mechanics among students, backed by extensive teaching experience.

APPOINTMENTS

Assistant Professor,

July 2024 - Present

Department of Aerospace Engineering, University of Kansas, KS, USA.

ORISE Postdoctoral Fellow,

March 2024 - July 2024

Division of Quantitative Method and Modeling, CDER, OGD US Food & Drug Administration (FDA), MD, USA.

Postdoctoral Fellow, Mechanical Engineering,

March 2021 - March 2024

Johns Hopkins University, MD, USA.

EDUCATION

Ph.D. Mechanical Engineering,

Dec 2020

Michigan State University, MI, USA.

• Thesis: Simulation and modeling of compressible and incompressible turbulent channel flows over rough walls (link to abstract).

B.Sc. Mechanical Engineering,

Jul 2016

Sharif University of Technology, Tehran, Iran.

B.Sc. Aerospace Engineering,

Jul 2016

Sharif University of Technology, Tehran, Iran.

JOURNAL ARTICLES

- M. Aghaei Jouybari, J.H. Seo, S. Pinto, L. Cattafesta, C. Meneveau and R. Mittal (2024). Extended Darcy–Forchheimer law including inertial flow deflection effects. *Journal of Fluid Mechanics*, 980, A13. https://doi.org/10.1017/jfm.2023.1083
- 2. **M. Aghaei Jouybari**, J. Yuan, Z. Li, G.J. Brereton and F.A. Jaberi (2023). Supersonic turbulent flows over sinusoidal rough walls. *Journal of Fluid Mechanics*, **956**, A3.

M. Aghaei Jouybari Curriculum Vitae

https://doi.org/10.1017/jfm.2022.1049

3. **M. Aghaei Jouybari**, J.H. Seo, J. Yuan, R. Mittal and C. Meneveau (2022). Contributions to pressure drag in rough-wall turbulent flows: Insights from force partitioning. *Physical Review Fluids*, **7**, 084602. https://doi.org/10.1103/PhysRevFluids.7.084602

- 4. **M. Aghaei Jouybari**, J. Yuan, G.J. Brereton and M.S. Murillo (2021). Data-driven prediction of the equivalent sand-grain height in rough-wall turbulent flows. *Journal of Fluid Mechanics*, **912**, A8. https://doi.org/10.1017/jfm.2020.1085
- 5. G.J. Brereton, **M. Aghaei Jouybari** and J. Yuan (2021). Toward modeling of turbulent flow over surfaces of arbitrary roughness. *Physics of Fluids*, **33**, 065121. https://doi.org/10.1063/5.0051097
- 6. **M. Aghaei Jouybari**, G.J. Brereton and J. Yuan (2019). Turbulence structures over realistic and synthetic wall roughness in open channel flow at $Re_{\tau}=1000$. *Journal of Turbulence*, **20**, 723-749. https://doi.org/10.1080/14685248.2019.1706741
- 7. J. Yuan and **M. Aghaei Jouybari** (2018). Topographical effects of roughness on turbulence statistics in roughness sublayer. *Physical Review Fluids*, **3**, 114603. https://doi.org/10.1103/PhysRevFluids.3.114603

REFEREED CONFERENCE PROCEEDINGS

- S.N. Pinto, Y. Zhang, L.N. Cattafesta, R. Mittal, C. Meneveau, M. Luhar, M. Aghaei Jouybari, J.H. Seo, S. Vijay and I. Eizenberg (2023). Characterization of Periodic Lattice Anisotropic Porous Materials for Passive Flow Control. AIAA AVIATION 2023 Forum, AIAA 2023-3448.c1. https://doi.org/10.2514/6.2023-3448.c1
- 2. G.J. Brereton, J. Yuan, and **M. Aghaei Jouybari**. Surface body-force model for turbulent flow over rough walls. In Proc. 34^{th} Symposium on Naval Hydrodynamics, Washington D.C., USA, 2022.
- 3. **M. Aghaei Jouybari**, J. Yuan, and G. J. Brereton. DNS data driven modeling of turbulent flows over rough walls. In Proc. 33^{rd} Symposium on Naval Hydrodynamics, Osaka, Japan, 2020.

CONFERENCE PRESENTATIONS

- 1. **M. Aghaei Jouybari**, J.H. Seo, S. Pinto, L. Cattafesta, C. Meneveau and R. Mittal. Darcy-Forchheimer law for porous media flows in the highly-nonlinear regime for passive flow control. Presented at the 75^{th} annual meeting of APS-DFD, Indianapolis, IN, Nov 20–22, 2022.
- 2. J.H. Seo, **M. Aghaei Jouybari**, S. Pinto, C. Meneveau, L. Cattafesta and R. Mittal. Control of wall-mounted bluff body wake by a porous substrate. Presented at the 75^{th} annual meeting of APS-DFD, Indianapolis, IN, Nov 20–22, 2022.
- 3. **M. Aghaei Jouybari**, J.H. Seo, J. Yuan, R. Mittal, and C. Meneveau. How are flow structures related to drag forces and equivalent sandgrain height in turbulent flows over rough walls? Presented at the 74th annual meeting of APS-DFD, Phoenix, AZ, Nov 21–23, 2021.
- 4. **M. Aghaei Jouybari**, J. Yuan, and G. J. Brereton. DNS data driven modeling of turbulent flows over rough walls. In proc. 33rd Symposium on Naval Hydrodynamics, Osaka, Japan, October 18-23, 2020.
- 5. **M. Aghaei Jouybari**, J. Yuan, F.A. Jaberi and G.J. Brereton. Turbulence behavior in supersonic channel flows with two- and three-dimensional sinusoidal roughness. Presented at the 73^{rd} annual

M. Aghaei Jouybari Curriculum Vitae

meeting of APS-DFD, Chicago, IL, Nov 22-24, 2020.

- 6. **M. Aghaei Jouybari**, G.J. Brereton and J. Yuan. Multi-parameter prediction of roughness function and drag profiles in turbulent channel flows over rough walls. Presented at the 72^{nd} annual meeting of APS-DFD, Seattle, WA, Nov 23–26, 2019.
- 7. G.J. Brereton, J. Yuan and **M. Aghaei Jouybari**. Modeling turbulent rough-wall flow with pseudo body forces. Presented at the 72^{nd} annual meeting of APS-DFD, Seattle, WA, Nov 23–26, 2019.
- 8. **M. Aghaei Jouybari**, J. Yuan and G.J. Brereton. Effects of irregular roughness on roughness-sublayer turbulence statistics and coherent motions. Presented at the 71st annual meeting of APS-DFD, Atlanta, GA, Nov 18–20, 2018.
- M. Aghaei Jouybari and J. Yuan. Roughness topographical effects on mean momentum and stress budgets in developed turbulent channel flows. Presented at the 70th annual meeting of APS-DFD, Denver, CO, Nov 19–21, 2017.

TEACHING & RESEARCH APPOINTMENTS

 Research Associate, Flow Physics and Computation Lab, Turbulence Research Group, Johns Hopkins University. 	Mar 2021 – July 2024
 Teaching Assistant and Guest Lecturer, Advanced Turbulence Course, Johns Hopkins University. 	Fall 2021
 CFD Lab Coordinator, Michigan State University. 	May 2019 – Mar 2021
o Research Assistant, TSM and CFD Labs, Michigan State University.	Sep 2016 – Mar 2021
o Teaching Assistant, Fluid Mechanics Lab, Michigan State University.	Spring 2017
o Teaching Assistant, Thermodynamics I, Sharif University.	Spring 2014

SKILLS

- Computational Fluid Dynamics
- Turbulence Simulation & Modeling
- Programming Languages
- Machine Learning, AI
- High Performance Computing
- Optimization

- ViCar3D, LJCompressible, ANSYS-Fluent, OpenFOAM
- DNS, LES, RANS
- MATLAB, Python, Fortran, C++
- Supervised, Unsupervised, Reinforcement Learning
- OpenMP, MPI, GPU, SLURM, Bash
- Genetic Algorithms, Gradient Descent

M. Aghaei Jouybari Curriculum Vitae

SELECTED PROJECTS

Passive Control of Non-Canonical Flows with Anisotropic Porous
 Mar 2021 – July 2024
 Materials – DNS and LES. Supervised by Prof. C. Meneveau and Prof.
 R. Mittal, Johns Hopkins University.

 Simulation of compressible (sub- and supersonic) channel flows over rough surfaces using a new immersed boundary method. Supervised by Prof. F.A. Jaberi and Prof. J. Yuan, Michigan State University.

Sep 2018 – Mar 2021

 Simulation and modeling of incompressible turbulent flows over rough surfaces. Supervised by Prof. G.J. Brereton and Prof. J. Yuan, Michigan State University. Sep 2016 – Dec 2020

 Numerical study and point optimization of flat plate film cooling, using anti-kidney vortex pairs. Supervised by Prof. K. Mazaheri, Sharif University of Technology.

Jun 2015 – Jun 2016

REFERENCES

o Giles J. Brereton,

Professor of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA.

□ brereton@egr.msu.edu

 \Box +1 517 432 3340

o Charles Meneveau,

Louis M. Sardella Professor of Mechanical Engineering,

Director of Turbulence Research Group,

Associate Director, Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21218, USA.

 \Box +1 410 516 7802

Rajat Mittal,

Professor of Mechanical Engineering, Director of Flow Physics and Computation Lab, Johns Hopkins University, Baltimore, MD 21218, USA.

 \Box +1 410 516 4069

o Junlin Yuan,

Assistant Professor of Mechanical Engineering, Director of Turbulence Simulation and Modeling Lab, Michigan State University, East Lansing, MI 48824, USA.

☑ junlin@egr.msu.edu

1 +1 517 353 6733

Updated - August 5, 2024.